

Vishay Semiconductors

Small Signal Schottky Diodes

Features

- · For general purpose applications
- The LL101 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.

- Low capacitance
- · Low leakage current
- This diode is also available in the DO-35 case with type designation SD101A, B, C and in the SOD-123 case with type designation SD101AW-V, SD101BW-V, SD101CW-V
- · AEC-Q101 qualified
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Applications

- HF-Detector
- Protection circuit
- Diode for low currents wits a low supply voltage
- Small battery charger
- Power supplies
- DC/DC converter for notebooks

Parts Table

Part	Type differentiation	Ordering code	Remarks
LL101A	$V_R = 60$ V, V_F at I_F 1 mA max. 410 mV	LL101A-GS18 or LL101A-GS08	Tape and Reel
LL101B	$V_R = 50 \text{ V}, V_F \text{ at } I_F 1 \text{ mA max. } 400 \text{ mV}$	LL101B-GS18 or LL101B-GS08	Tape and Reel
LL101C	$V_R = 40 \text{ V}, V_F \text{ at } I_F 1 \text{ mA max. } 390 \text{ mV}$	LL101C-GS18 or LL101C-GS08	Tape and Reel

Absolute Maximum Ratings

 $T_{amb} = 25$ °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
		LL101A	V _{RRM}	60	V
Peak inverse voltage		LL101B	V _{RRM}	50	V
		LL101C	V _{RRM}	40	V
Power dissipation (infinite heatsink)			P _{tot}	400 ¹⁾	mW
Forward continuous current			I _F	30	mA
Maximum single cycle surge 10 μs square wave			I _{FSM}	2	А

¹⁾ Valid provided that electrodes are kept at ambient temperature

Mechanical Data

Case: MiniMELF SOD-80
Weight: approx. 31 mg
Cathode band color: black
Packaging codes/options:

94 9371

GS18 / 10 k per 13" reel (8 mm tape), 10 k/box GS08 / 2.5 k per 7" reel (8 mm tape), 12.5 k/box

LL101A, LL101B, LL101C

Vishay Semiconductors

Thermal Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit	
Junction temperature		T _j	125	°C	
Storage temperature range		T _{stg}	- 65 to + 150	°C	
Thermal resistance junction to ambient air	on PC board 50 mm x 50 mm x 1.6 mm	R _{thJA}	320	K/W	

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Reverse Breakdown Voltage	I _R = 10 μA	LL101A	V _(BR)	60			V
		LL101B	V _(BR)	50			V
		LL101C	V _(BR)	40			V
Leakage current	V _R = 50 V	LL101A	I _R			200	nA
	V _R = 40 V	LL101B	I _R			200	nA
	V _R = 30 V	LL101C	I _R			200	nA
Forward voltage drop	I _F = 1 mA	LL101A	V_{F}			410	mV
	I _F = 1 mA	LL101B	V_{F}			400	mV
	I _F = 1 mA	LL101C	V _F			390	mV
	I _F = 15 mA	LL101A	V _F			1000	mV
		LL101B	V _F			950	mV
		LL101C	V _F			900	mV
Diode capacitance	V _R = 0 V, f = 1 MHz	LL101A	C _D			2.0	pF
	V _R = 0 V, f = 1 MHz	LL101B	C _D			2.1	pF
		LL101C	C _D			2.2	pF
Reverse recovery time	I _F = I _R = 5 mA, recover to 0.1 I _R		t _{rr}			1	ns

Typical Characteristics

T_{amb} = 25 °C, unless otherwise specified

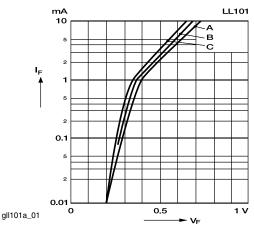
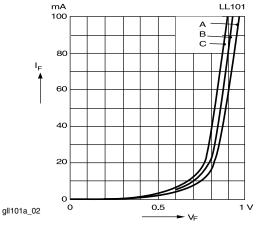
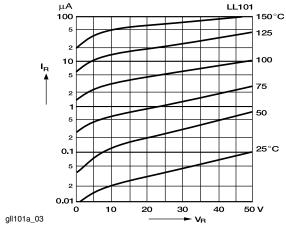
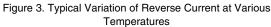


Figure 1. Typ. I_F vs. V_F for primary conduction through the Schottky barrier


Figure 2. Typ. I_F of combination Schottky barrrier and PN junction guard ring

Vishay Semiconductors

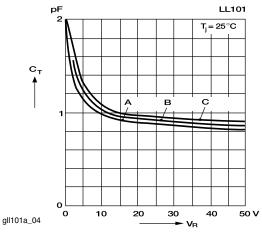
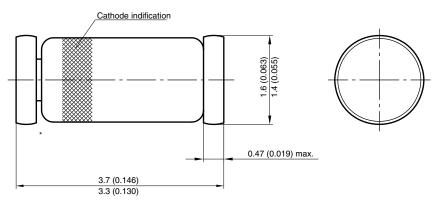
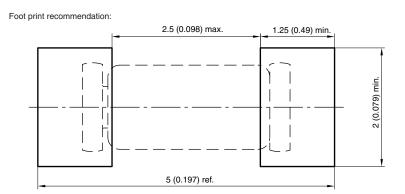




Figure 4. Typical Capacitance Curve as a Function of Reverse Voltage

Package Dimensions in millimeters (inches): MiniMELF SOD-80

^{*} The gap between plug and glass can be either on cathode or anode side

Document no.:6.560-5005.01-4 Rev. 8 - Date: 07.June.2006

96 12070

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

www.vishay.com